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Abstract- In this paper, the radiative transfer theory is ap-

plied to interpret polarimetric radar backscatter from pln¢ for-

est with clustered vegetation structures. To take into account

the clustered structures with the radiative transfer theory, the

scattering function of each duster is calculated by incorporat-

ing the phase interference of scattered fields from each com-

ponent. Subsequently, the resulting phase matrix is used in
the radiative transfer equations to evaluate the polarimetric

backscattering coefficients from random medium layers embed-

dad with vegetation dusters. Upon including the multi.scale
structures, namely, trunks, primary and secondary branches,
as well as needles, we interpret and simulate the polarimetric

radar responses from pine forest for different frequencies and

looking angles. The preliminary results ate shown to be in

good agreement with the measured back_cattering coefficients
at the Landes maritime pine forest during the MAESTRO-1

experiment.

I. Introduction

In recent years, the application of radar polarimet r):for ac-

Live remote sensing of the earth terrain has inspired extensive
interests. A v_riety of theories have been used for electro-

magnetic modeling of geophysic_ terrain, such as snow, ice,
and vegetation canopy [1]. Among these studies, the radia- izations is defined as

tire transfer (RT) theory has been commonly used to calculate
radar hackscattering coefficients from layered geophysical me-

dia and to interpret the experimental measurements.

The radiative transfer theory consists of the radiative

transfer equations which govern the electromagnetic energy
propagation through scattering media. Various models have

been developed based on this theory [2-4]. In general, the

conventional R.T theory ignores the relative phase information

associated with structured scatterers, which may play an

important role in the overall scattering behavior [5]. In forest,

vegetation consists of structures of many different scale length

- the trunk, primary branches, secondary branches, and needle

leaves, etc. Vegetation elements of each scale are connected
to elements of other scales in a fashion statistically described

by the unique architecture pertaining to each tree species.
For the microwave remote sensing of forest, the vegetation

structures not only give rise to the separation of scattering

centers for different polarizations, but also provide partially

coherent scattering by different scatterers with statistically

prescribed relative positions.

In this paper, a four-layer RT modal is presented fer

the modeling of the pine forest in the Landes area, France-
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We make use of the newly developed branching model for

vegetation [7] to account for the scattering properties of
structured pine trees. The modal thus constructed has a wide

validity range in frequency spectrum.

IL Radiative Transfer Theory

Consider an electromagnetic wave incident upon a multi-

layered random medium with the inddent angle 0o as shown

in Fig. 1. The scattering regions 1 to 3 are layers of

thickness ha (n = 1,2,3), where discrete scatterers embedded
in homogeneous background. The bottom boundary between

region 4 and region t can be either a flat surface or a rough
surface described by a Gaussian random process.

The vector radiative transfer equation for the spedfic

intensity in each scattering region is of the form

coss _(0, _, _) = _ _(s, _, _). 7(6,_,_)
,_ (z)

+ _ de?_(e, ¢;a',¢')- ?(o',¢',,)

where the Stokes vector 7 containing information regarding

field intensity and phase relation of the two orthogonal polar-

) [ (IEal:) '_

\2 Im<E, Eh) /"

(2)

In (2), the subscripts h and v represent the horizontal and verti-
cal polarizations, respectively. The angular bracket ( ) denotes
ensemble average over the size and orientation distributions
of scatterers; and 17 = _ is the free-space characteristic

impedance.

The extinction matrix _e represents the attenuation due

to both the scattering and absorption, and can be obtained
through the optical theorem in terms of forward scattering

functions. The phase matrix _(0,_;0r,_ ') characterizes the

scattering of the Stokes vector from (Ol,_ I) direction into

(0, _) direction. The phase matrix can be formulated in terms

of scattering functions of the randomly distributed discrete
scatterers. Along with the'boundary conditions, we can solve
the radiative transfer equations iterativdy for the polarimetric

hackscattering coemdents [1].
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III. Scattering Punction for Clustered Structure IV. Comparison with Experimental Data

In order to take into account the partially coherent effect

due to clustered vegetation structures, we formulate the phase

matrix based on the branching model for vegetation. In pine

forest, most of the scatterers are of cylindrical shapes. Hence
in this study, the main subject is cylinder dusters. For the
cylinder cluster that has one center cylinder and N branching

cylinders, the total backscattering function fa,8 is

N

nml

where f0a_ is the afl-th element of the scattering matrix for
the center cyllnder, and fna/_ is a_-th clement of the scattering
matrix for the n-th branching cylinder, a,_,7,6 represent

horizontal or vertical polarization.

Assuming all the-branching cylinders are identlcaland

independent of each other, the corrdation of f is ""

(/o_/_6) = (/0°_/_76) + _ (/-°M_76)

+

+ .N'(:N"-- 1)(fma_)(f;76)

• (4)

The relative phase of the n-th branch with respect to the center

cylinder is defined as

where r-i and k_ are the incident and scattered wave vectors,
respectively. _n is the location of the n-th branching cylinder

relative to the center cylinder.

In (4), the third and fourth terms are the coherent terms. It

can be seen that the incoherent approximation is valid when the

average of the random phase factor (eiC_J) is so small that the

coherent terms are negligible as compared with the incoherent
terms• However, this is not true for vegetation structure with

scale length comparable with wavdength.

For the calculation of scattered fields of different duster

dements, dielectric cylinders can be used to model trunks,

branches and coniferous leaves [6,7]. Leaves of deciduous tree •

can be modelled as disks [6,8]. The truncated infinite cylinder

approximation [9] is employed in this_study tq calculate

scattered fields from cylinders.
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The experiment is conducted by the Centre d'Etude Spa-

tlale des Rayonnements (CESR) at the Landes forest, in south-
west France, using the NASA/JPL Synthetic Aperture Radar

(SAR) during the MAESTRO-I campaign in August 1989. A

strong correlation between P-band backscatterlng toe'dents
and pine forest parameters has been observed in the measure-

ment data [10].

To modal the plne forest, the RT model described in

previous sections is adopted as depicted in Fig. 1..The top.
layer (region 1) consists of vertically orientated three-scale

didectrlc cylinder dusters characterin8 the trunks and the
attached smaller scale branching dusters. These smaller scale
branching dusters include primary and secondary brafiches, as

wall as needles. However, at P-band, only the primary and

secondary branches are important. In the three-scale too.dr,

all the smaller scale cylinders are uniformly distributed along

a larger scale center cylinder with 60 ° angle relative to the
orientation of the center cylinder, as show in Fig. 2. Region

2 contains vertically oriented dielectric cylinders representing
tree trunks. In region 3, vertical cyl;nders and randomly

oriented thin cylinders coexist characterizing a mixture of the
tree trunks and the short vegetation in the fores_ understory.

The underlying grass/ground consists of the attenuating grass
layer and the ground•

With this model, we calculate backscattering coe_dents
for six pine stands of different ages. The ages of the" forest

under investigation are 6, 14, 20, 30, 38, and 46 years old. It
is observed that as forest becomes aged, the average radius

of tree trunk grows bigger and the average tree height also

becomes taller. The primary and secondary branches grow

bigger as wall. In general, the above-ground blomass incre_es
despite the decrease in the number of trees per unit area
as forest ages. Since the ground truth indicates that the
surface is very smooth t'o_robservation at P-band, we modal the

ground as a planar surface. The grass layer above the ground
is considered as an homogeneous attenuating layer of 0.2m

height and characterized by a dielectric constant (1.05 + i0.5).

The calculated results for P-band are shown in Fig. 3. The
discrete points are the data collected by SAR; the curves are

the theoretical results. It is found from the simulations, the
main contribution for HH backscattering coeflldent is from

trunk-ground interaction and scattering ` from branches. As
for the W and HV, the branches are the dominate scattere_.





V. Conclusions

Radiative transfer theory is applied to the modeling of

polarimetric radar backscatter for vegetation canopy. The
phase matrix is derived with the coherent effects due to
the clustered structures. With this model, we simulate

runlet-frequency and multi-_ingular backscatterlng coef_dents

at different radar polarizations. Theoretical results _re in good

agreement with the measurement data collected by NASA/JPL
SAIL This paper presents the comparison performed at P-Band

&equency.
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